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Abstract

We study the implications of minimal flavor violating low energy supersymmetry
scenarios for the search of new physics in the B and Higgs sectors at the Tevatron
collider and the LHC. We show that the already stringent Tevatron bound on the
decay rate Bs → µ+µ− sets strong constraints on the possibility of generating large
corrections to the mass difference ∆Ms of the Bs eigenstates. We also show that
the Bs → µ+µ− bound together with the constraint on the branching ratio of the
rare decay b → sγ has strong implications for the search of light, non-standard Higgs
bosons at hadron colliders. In doing this, we demonstrate that the former expressions
derived for the analysis of the double penguin contributions in the Kaon sector need
to be corrected by additional terms for a realistic analysis of these effects. We also
study a specific non-minimal flavor violating scenario, where there are flavor changing
gluino-squark-quark interactions, governed by the CKM matrix elements, and show
that the B and Higgs physics constraints are similar to the ones in the minimal flavor
violating case. Finally we show that, in scenarios like electroweak baryogenesis which
have light stops and charginos, there may be enhanced effects on the B and K mixing
parameters, without any significant effect on the rate of Bs → µ+µ−.

http://arXiv.org/abs/hep-ph/0603106v3


1 Introduction

The standard model (SM) provides an accurate description of all the results from high energy
physics experiments, in particular precision electroweak measurements and flavor physics
observables. These experiments put strong constraints on extensions of the SM that have
tree-level flavor changing neutral current effects or large custodial symmetry breaking effects.
For renormalizable, weakly interacting theories, where the new exotic particles acquire large
gauge invariant masses so that they decouple from the low energy effective theory, these
constraints can be avoided. Low energy supersymmetry [1, 2] is a particularly attractive
example of this kind of theory. The minimal supersymmetric extension of the Standard
Model or MSSM (with gauge invariant SUSY breaking masses of the order of 1 TeV) predicts
an extended Higgs sector with a light SM-like Higgs boson of mass lower than 135 GeV [3]–
[13] that agrees well with precision electroweak measurements.

However the structure of supersymmetry breaking parameters is not well defined. If
there are no tree-level flavor changing transitions in any gauge or super-gauge interaction,
then the deviations from SM predictions are naturally small. Such small deviations can be
achieved if the quark and squark mass matrices are block diagonalizable in the same basis.
For instance, this happens when the squark and slepton supersymmetry breaking masses are
flavor independent. For these kinds of models, all flavor violating effects are induced at the
loop-level and are governed by the CKM matrix elements, as in the SM. Many studies have
concentrated on the properties of these minimal flavor violating scenarios (see, for example,
Refs. [14]–[23]).

In this article we shall analyze their flavor violating effects in two quite generic cases. In
the first case, we consider a low energy effective theory in which the quark and squark mass
matrices are aligned in flavor space and can be simultaneously diagonalized in blocks, as
described in the next section. We will remain agnostic about how this effective low energy
theory is UV completed. However, since the Yukawa-induced radiative corrections to the
soft supersymmetry breaking parameters tend to destroy the alignment of the squark and
quark mass matrices, this situation may be only naturally realized in models of low energy
supersymmetry breaking, where these radiative corrections are small. We call this low energy
scenario Minimal Flavor Violation.

In order to study the possible effect of Yukawa dependent radiative corrections we study a
second case, in which we assume a departure from the alignment condition by the presence of
flavor violating effects proportional to the CKM matrix elements. These effects are induced
by corrections to the left-handed down squark mass matrices proportional to the product
of the up-quark Yukawa matrix and its hermitian conjugate (or, in general, powers of this
product). We furthermore assume that the right-handed down squark masses are flavor
independent. As we will discuss in more detail in the next section, these conditions at low
energies are achieved, for instance, by Yukawa dependent radiative corrections, if one starts
from flavor independent squark masses at a high energy scale at moderate values of tanβ.
One characteristics of this second scenario is that there are flavor violating down-squark-
gluino vertices at tree-level. Since all flavor violating effects are governed by the CKM
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matrix elements, this scenario would also enter within the general definition of minimal
flavor violating models given in Ref. [21]. However, due to the presence of flavor violating
couplings at tree level, we will denote it as non-minimal flavor violation in order distinguish
it from the first scenario of flavor alignment at the weak scale, in which such tree-level effects
are absent. As we will show, the phenomenological predictions in this scenario are similar
to those of the flavor alignment case, unless the left-handed squarks and the gluino are very
light.

Apart from the structure of supersymmetry breaking parameters, the phases associated
with them are also important. In minimal flavor violating schemes there are at least two
phases that cannot be absorbed by redefining the low energy fields. For real values of the
µ parameter, these phases can be associated with a universal phase for the gaugino masses
and the trilinear mass parameter. In general, however, one can choose independent phases
for the different gaugino masses and trilinear mass parameters. CP-violating phases beyond
the CKM one are required, for instance, in models of electroweak baryogenesis [24]–[29]. In
this scenario, there could be significant effects on ∆Ms, BR(Bs → µ+µ−) and ǫK because of
the presence of a light stop and extra phases in the chargino, neutralino and gluino sectors.
We shall comment on the effects of these new CP violating phases below.

In this paper we attempt to develop a systematic method of treating the extra sources
of flavor violation in the minimal and non-minimal flavor violating models described above.
We show that the usual approach of calculating tanβ enhanced FCNC (Flavor Changing
Neutral Currents) effects in the Kaon sector does not agree with the exact results one finds
in the limit of flavor independent masses. Thus, we develop a perturbative approach that
leads to agreement with the exact result in this limit.

We shall emphasize the implications of the present bounds on BR(Bs → µ+µ−) for future
measurements at the Tevatron collider, both in Higgs as well as in B-physics. In particular,
we shall show that the present bound on BR(Bs → µ+µ−) leads to strong constraints
on possible corrections to both ∆Ms and the Kaon mixing parameters in minimal flavor
violating schemes. Moreover, we shall show that this bound, together with the constraint
implied by the measurement of BR(b → sγ) leads to limits on the possibility detecting
light, non-standard Higgs bosons in the MSSM at the Tevatron collider. Throughout the
paper we always take real values of µAt, and therefore the Higgs sector is approximately
CP-invariant [33, 34], and will be treated as such.

This article is organized as follows. In section 2, we define our theoretical setup, giving
the basic expressions necessary for the analysis of the flavor violating effects at large values
of tan β. In particular, we show how the first order perturbative expressions in the CKM
matrix elements are inappropriate to define the corrections in the Kaon sector where higher
order effects need to be considered. In section 3 we show the implications of the constraint
on BR(Bs → µ+µ−) for the mixing parameters of the Kaon and B sectors in the large tanβ
regime. In section 4, we explain the implications for Higgs searches at the Tevatron. We
reserve section 5 for our conclusions and some technical details for the appendices.
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Figure 1: SUSY radiative corrections to the self-energies of the d-quarks in the mass insertion
approximation

2 Theoretical Setup

2.1 The resummed effective Lagrangian and the sparticle spec-

trum

The importance of large tan β FCNC effects in supersymmetry has been known for sometime.
The finite pieces of the one-loop self energy diagrams lead to an effective lagrangian for the
quark-Higgs sector, valid at energy scales lower than the heavy squark masses, which has
the generic form [15]–[20], [30, 31]

− Leff = d̄0
RŶd[Φ0∗

d + Φ∗0
u

(

ǫ̂0 + ǫ̂YŶ†
uŶu

)

]d0
L + Φ0

uū
0
RŶuu0

L + h.c. (1)

−Lmass =
vd√
2
d̄0

RŶd[1 + tan β
(

ǫ̂0 + ǫ̂YŶ†
uŶu

)

]d0
L +

vu√
2
ū0

RŶuu0
L + h.c. (2)

in an arbitrary basis. The ǫ̂0 and ǫ̂Y matrices correspond to radiative contributions [32]
coming from the loops shown in Fig. 1. Their exact dependence on the supersymmetric
mass parameters is given in Appendix A.2.

The flavor structure of the loop correction factors are independent of their momentum
integrations. Therefore, in an arbitrary basis, the flavor dependence of the loop correction
parameters are the same as that of the mass matrices and Yukawa couplings. Thus, the loop
correction factors have the following flavor structure

Ŷdǫ̂0 ∝ M̂−2

d̃R
ŶdM̂

−2

d̃L
(3)

Ŷdǫ̂Y Ŷ†
uŶu ∝ ŶdM̂

−2
ũL

Ŷ†
uM̂

−2
ũR

Ŷu (4)

where M̂−2 matrices are the non-diagonal inverse squark mass squared matrices. Thus the
sparticle spectrum is intimately connected to the ǫ parameters which in turn affect the
FCNC’s. We look at two possible choices that connect the quark mass eigenstate basis to
that of the squarks.
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2.1.1 Minimal Flavor Violation

This scenario is similar to that discussed in Refs. [17, 19, 15, 16], where one assumes an
alignment of the quark and squark mass matrices in flavor space. Therefore, in the low
energy effective theory, the diagonalization of the quark mass matrices leads to squark mass
matrices that are block diagonal. Using the following transformation matrices

u0
L = U

Q

L uL, d0
L = U

Q

L V0dL, u0
R = Uu

RuR, d0
R = Ud

RdR (5)

to rotate the original quark supermultiplets into a basis where the tree level Yukawa couplings
are diagonal, we get

Yd = U
d†
R ŶdU

Q
L V0;

Yu = U
u†
R ŶuU

Q
L ;

M−2

d̃R

= U
d†
R M̂−2

d̃R

Ud
R; M−2

d̃L

= V
†
0U

Q†
L M̂−2

d̃L

U
Q

L V0;

M−2
ũR

= U
u†
R M̂−2

ũR
Uu

R; M−2
ũL

= U
Q†
L M̂−2

ũL
U

Q
L ;

ǫ̂0 ∝ U
Q

L V0M
−2

d̃R

M−2

d̃L

V
†
0U

Q†
L ; ǫ̂0 = U

Q

L V0ǫ0V
†
0U

Q†
L ;

ǫ̂Y ∝ U
Q

L M−2
ũL

M−2
ũR

U
Q†
L ; ǫ̂Y = U

Q

L ǫY U
Q†
L ; (6)

where the un-hatted mass and Yukawa matrices are diagonal and V0 is the tree level CKM
matrix. Under this transformation the effective mass lagrangian becomes

−Lmass =
vd√
2
d̄RYd[1 + tan β

(

ǫ0 + V
†
0ǫY|Yu|2V0

)

]dL +
vu√
2
ūRYuuL + h.c. (7)

where the ǫ0 and ǫY terms, defined in Eq. (6) (see also Appendix A, Eq. (137) and Eq. (138)),
are diagonal. Therefore the quark mass matrices receive off-diagonal terms proportional to
ǫY at the 1-loop level and so need to be rediagonalized perturbatively. This procedure has
been performed in Refs. [17, 19]. However, the calculation of the (2, 1) and (1, 2) components
of the neutral-Higgs-quark-quark coupling are affected by additional corrections not included
in Refs. [17, 19]. In Appendix A.1 we calculate the corrected couplings which we present
here. Defining the down-quark neutral Higgs interaction Lagrangian to be

− L = d̄J
R

(

XS
RL

)JI
dI

LφS + h.c., (8)

we find that the neutral Higgs flavor changing coupling, with I 6= J , takes the form

(XS
RL)JI =

m̄dJ
y2

t Γ
JI(xS

u − xS
d tanβ)

vd(1 + ǫJ
0 tanβ)(1 + ǫ3 tanβ)

V 3J∗
eff V 3I

eff (9)

where we have ignored the small effects proportional to the first and second generation
Yukawa couplings to find ǫJ = ǫJ

0 + δ3JǫY y2
t , xS

u and xS
d are the Higgs scalar components on
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the neutral Φ0∗
u and Φ0∗

d fields (see Appendix A, Eq.(117)) and

Γ3I = ǫY (10)

ΓJ3 =
ǫY (1 + ǫ∗3 tanβ) − ǫ∗Y (ǫ3 − ǫJ) tan β

1 + ǫ3∗
0 tanβ

(11)

Γ21 =
ǫY

(1 + ǫ2 tanβ)|1 + ǫ3
0 tanβ|2

[

(1 + ǫ3
0 tan β)|1 + ǫ3 tan β|2−

ǫY y2
t tanβ(1 + ǫ∗3 tan β)(1 + ǫ2 tan β) − ǫ∗Y y2

t tan β(1 + ǫ2 tanβ)2
]

(12)

Γ12 =
ǫY

(1 + ǫ2 tanβ)|1 + ǫ3
0 tanβ|2

{

(1 + ǫ3
0 tanβ)|1 + ǫ3 tanβ|2−

ǫY y2
t tanβ(1 + ǫ∗3 tan β)(1 + ǫ2 tan β) − ǫ∗Y y2

t tan β(1 + ǫ2 tanβ)(1 + ǫ1 tan β)

+
ǫ1 − ǫ2

ǫY

[

ǫ∗Y tan β

1 + ǫ∗2 tan β
− (ǫ∗Y )2y2

t tan2 β

(1 + ǫ∗2 tan β)(1 + ǫ∗3 tan β)
− |ǫY |2y2

t tan2 β

|1 + ǫ3 tan β|2−
]}

. (13)

Here Veff is the CKM matrix obtained after diagonalization of the one-loop mass matrix
in Eq. (7). The relation between this matrix and V0 is given in the Appendix A.1. Observe
that in the limit of universal squark soft SUSY breaking masses the ǫ0 diagonal matrix is
proportional to the identity and, in spite of their complicated form, all the ΓIJ become
equal to ǫY . The difference between the above expressions and those obtained before in the
literature will be discussed in more detail below.

2.1.2 Non-minimal Flavor Violation using the CKM matrix

As explained in the introduction, we shall discuss a second scenario in which all flavor
violating effects are proportional to CKM matrix elements, and there are tree-level down-
squark-gluino flavor violating vertices in the low energy effective theory. This scenario is
similar to that discussed in Ref. [20]. For the present discussion, let us assume that we
perform the diagonalization procedure in a single step under the transformation

u0
L = U

Q

L uL, d0
L = U

Q

L VeffdL, u0
R = Uu

RuR, d0
R = Ud

RdR (14)

where instead of V0 the tree level CKM matrix we have Veff the effective CKM matrix.
This transformation leads to a diagonal quark mass matrix and a mass lagrangian of the
form

−Lmass =
vd√
2
d̄RU

d†
R ŶdU

Q
L [1 + tanβ

(

ǫ0 + ǫY|Yu|2
)

]VeffdL +
vu√
2
ūRYuuL + h.c., (15)

under the assumption that the matrices

ǫ0 = U
Q†
L ǫ̂0U

Q
L

ǫY = U
Q†
L ǫ̂YU

Q

L (16)
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are diagonal [20]. The condition that U
Q†
L ǫ̂YU

Q
L is diagonal is the same as Eq. (6) in Minimal

Flavor Violation. Thus we again need the u-squark mass matrix to be block diagonal in the u-
quark eigenbasis. Therefore there are no flavor changing effects in the neutral up supergauge
currents.

However the assumption that U
Q†
L ǫ̂0U

Q

L is diagonal differs from Eq. (6) in MFV. From
the flavor structure of ǫ̂0 in Eq.(3), we see that this can only be naturally fulfilled if

M−2

d̃L

= U
Q†
L M̂−2

d̃L

U
Q

L , and M−2

d̃R

= U
d†
R M̂−2

d̃R

Ud
R (17)

are diagonal and [M−2

d̃R

,YdV
†
eff ] = 0. The obvious way of satisfying this commutation

relation is to require the right-handed d-squark mass matrix to be flavor independent or
M2

d̃R

∝ I. Observe that this analysis was not performed in Ref. [20] and hence the above

conditions were not required in that work. As stressed in the introduction, the above flavor
structure of mass matrices may be achieved by Yukawa induced radiative corrections to
universal, flavor independent squark masses at high energy scales, at moderate values of
tan β. Assuming the squark masses are flavor independent at high energies, the only one-
loop corrections that violate flavor are induced by the up and down Yukawa matrices because
the gauge interactions are flavor blind. These corrections are given by [22]

∆M2
Q̃
≃ − 1

8π2

[

(

2m2
0 + M2

Hu
(0) + A2

0

)

Y †
u Yu +

(

2m2
0 + M2

Hd
(0) + A2

0

)

Y †
d Yd

]

log

(

M

MSUSY

)

,

(18)
where Q̃ denote the left-handed squarks, m0 is the common squark mass at the scale M at
which supersymmetry breaking is transmitted to the observable sector, M2

Hu,d
(0) and A0 are

the Higgs soft supersymmetry breaking masses and squark-Higgs trilinear mass parameters
at that scale, and MSUSY is the characteristic low energy squark mass scale.

Similarly, the right-handed up and down squark mass matrices, receive one-loop Yukawa-
induced corrections proportional to

∆M2
ũR

= − 2

8π2

(

2m2
0 + M2

Hu
(0) + A2

0

)

YuY
†
u log

(

M

MSUSY

)

, (19)

and

∆M2
d̃R

= − 2

8π2

(

2m2
0 + M2

Hd
(0) + A2

0

)

YdY
†
d log

(

M

MSUSY

)

, (20)

respectively.
Therefore, while the Yukawa induced radiative corrections to the right-handed squark

mass matrices mantain the alignment of these matrices with their corresponding Yukawa
matrices, the corrections to the left-handed squark masses induced a misalignment between
the quark and squark mass matrices governed by CKM matrix elements. Since the dominant
effects are governed by the third generation Yukawa eigenvalues, the down-quark Yukawa
effects may be neglected at small or moderate values of tanβ where the bottom Yukawa
coupling is much smaller than the top quark one. In this case, one arrives at the properties
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of the squark mass matrices specified in the non-minimal flavor violating scenario defined
above.

In general, even at larger values of tan β, the only flavor violating squark-gluino vertices
will be in the left-handed couplings (and the Higgs-squark-squark vertices) and they will be
governed by CKM matrix elements. The only difference between the large tan β case with
respect to the non-minimal flavor violating model defined above is that the masses of the
right-handed down squarks will no longer be flavor independent at low energies and therefore
the ǫ̂0 matrix will not be aligned with the ǫ̂Y one. However, the flavor properties of the large
tan β scenario are quite similar the non-minimal flavor violating scenario specified above
and therefore this scenario will allow us to study the possible effects of the Yukawa induced
radiative corrections to the squark mass matrices, in particular the ones associated with the
flavor violating down-squark-gluino couplings at tree-level.

Following the argument in Ref. [20] we can rewrite the effective lagrangian in terms of
the mass eigenstates as

− Leff =

√
2

vu

(Φ0∗
d − Φ0∗

u tan β)d̄Rm̄dV †
effR

−1VeffdL +

√
2

vu

Φ0∗
u d̄Rm̄ddL

+Φ0
uūRYuuL + h.c. (21)

where Veff is the effective CKM matrix, Yu is the diagonal up Yukawa matrix, m̄d is the
diagonal down-quark running mass matrix, and

R = 1 + ǫ0 tan β + ǫY|Yu|2 tanβ. (22)

Therefore, neglecting1 yu and yc as compared to yt, and defining

ǫJ = ǫJ
0 + ǫY y2

t δ
J3 (23)

for all J , we find

(R−1)JI =
1

1 + ǫJ tan β
δJI (24)

If we assume a generational mass splitting so that the first two generations are equally
massive and heavier than the third generation we find ǫ1

0 = ǫ2
0 = ǫ0. In this case the flavor

changing effects are not solely dependent on ǫY , but they also depend on the difference
between the loop factors (ǫ3 − ǫ0):

(XS
RL)JI =

m̄dJ
(ǫ3 − ǫ0)(x

S
u − xS

d tanβ)

vd(1 + ǫ0 tan β)(1 + ǫ3 tanβ)
V 3J∗

eff V 3I
eff . (25)

The reason we call this scenario non-minimal flavor violation is that the diagonalization
procedure induces flavor changing effects in the gluino-quark-squark couplings which lead to

1This approximation breaks down in the limit 1 + ǫ0 tan β → 0, the singularity in [XdS

RL
] proportional to

yt cancels against those coming from yc and yu as discussed in Ref. [20]
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additional contributions to flavor changing processes. Indeed, the assumption that ǫ0 and ǫY
in Eq.(16) are diagonal leads to the appearance of CKM elements in the down quark-squark-
gluino coupling, as it is clear from Eqs. (14) and (17). Because the left-handed squarks
are not diagonalized by the same rotation as the left-handed quarks, the effective gluino
Lagrangian becomes

Lg̃ = −
√

2gs [ūL g̃a T aũL − ūR g̃a T aũR]

+
√

2gs

[

d̄L g̃a T a Vd̃L − d̄R g̃a T ad̃R

]

. (26)

The appearance of the CKM matrix in the gluino couplings induces flavor changing box
diagrams that can in principle produce large effects.

2.1.3 The uniform squark mass limit

The two flavor changing scenarios discussed above coincide for the case of uniform squark
masses. Since, in this limit, the transformation performed in Section 2.1.2 requires no approx-
imations or assumptions the expression for the FCNC’s are exact. However, the perturbative
approach in Section 2.1.1 provides expressions for the FCNCs that are only valid up to a
certain order in the off-diagonal CKM matrix elements. For the perturbative approach in
Section 2.1.1 to be valid we need the two expression for the FCNC’s to be equal to at least
quadratic order in the off-diagonal CKM matrix elements. However, as discussed above,
comparing the results of Ref. [19] and Ref. [20] this is clearly not true for the (2, 1) and (1, 2)
components of the down quark-Higgs couplings XRL.

In the uniform squark limit, the flavor violating coupling given in Eq. (25) has the form

(XS
RL)JI =

m̄dJ
ǫY y2

t (x
S
u − xS

d tanβ)

vd(1 + ǫ3 tan β)(1 + ǫ0 tanβ)
V 3J∗

eff V 3I
eff . (27)

which does not agree with the results in Ref. [19], where they find the corrected coupling to
be

(XS
RL)21 =

m̄dJ
ǫY y2

t

vd

|1 + ǫ3 tan β|2
|1 + ǫ0 tan β|2(1 + ǫ0 tanβ)2

V 3J∗
eff V 3I5

eff (xS
u − xS

d tan β). (28)

To understand this difference between the results of Ref. [19] and Ref. [20] we need to look
at the approximations made in Ref. [19]. Diagonalizing the tree level quark mass matrices in
Eq. (7) leads to uncorrected diagonal masses md and a CKM matrix V0. However the large
tan β enhanced radiative corrections lead to off-diagonal terms in the mass matrix, which
have the form

(md + ∆md)JI = mdJ

(

(1 + ǫJ tanβ)δJI + ǫY y2
t tan βλJI

0

)

(29)

where λJI
0 = V 3J∗

0 V 3I
0 for J 6= I and ǫJ is defined in eqn. (23). We have also neglected

contributions to the diagonal elements of the form |V 3J
0 |2 for J 6= 3 as they are subdominant.
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Hence, to go to the physical quark basis we need to further diagonalize this effective mass
matrix by unitary matrices DL,R so that

e−iθJ (D†
R(md + ∆md)DL)JI = m̄dJ

δJI (30)

where θJ = arg(1 + ǫJ tan β). The approach taken in Ref. [19] is to perturbatively expand
the diagonalization matrices DL and DR so that

DL = 1 + ∆DL (31)

DR = 1 + ∆DR (32)

where the unitarity of DL,R to linear order in ∆ leads to conditions (∆DL,R)† = −∆DL,R,
so that when J 6= I in Eq.(30) we have the condition

e−iθJ (−(∆DR)m̄d + ∆md + m̄d(∆DL))JI = 0, (33)

where the m̄d includes higher order terms and higher orders in ∆ have been neglected. Using
Eq. (33) and its dagger along with the hierarchy in quark masses gives us

(∆DL)JI =

{

− ǫY y2
t tan β

1+ǫJ tan β
λJI

0 J > I
ǫ∗Y y2

t tan β

1+ǫ∗
I

tan β
λJI

0 J < I
(34)

and

(∆DR)JI =







− m̄dI

m̄dJ

(

ǫY y2
t tan β

1+ǫJ tan β
+

ǫ∗
Y

y2
t tan β

1+ǫ∗
I
tan β

)

ei(θJ−θI)λJI
0 J > I

m̄dJ

m̄dI

(

ǫY y2
t tan β

1+ǫI tan β
+

ǫ∗Y y2
t tan β

1+ǫ∗
J

tan β

)

ei(θJ−θI)λJI
0 J < I

(35)

Putting these matrices back into Eq. (33) with (J, I) = (2, 1) the dominant terms have the
form

e−iθ2(m̄d∆DL)21 = −m̄sǫY y2
t tan β

1 + ǫ2 tanβ
λ21

0 , (36)

which are comparable to the terms that were neglected in Eq. (33) like

e−iθ2((∆md)(∆DL))21 = − m̄sǫ
2
Y y4

t tan2 β

(1 + ǫ2 tan β)(1 + ǫ3 tanβ)
λ21

0 . (37)

This is particularly true for values of ǫ3 < 0 and large values of tan β. Therefore the deviation
between Ref. [20] and Ref. [19] in the Kaon sector is due to a breakdown in the perturbative
series leading to first and second order contributions being comparable. The expansion
shown in Ref. [19] works for the (1, 3), (2, 3), (3, 1) and (3, 2) components as they expanded
the mass matrices only to first order. As mentioned above, an analysis of the second order
corrections, together with a derivation of Eqs. (12)–(13) is presented in Appendix A.1.
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2.1.4 Flavor changing in the Charged Higgs Coupling

The process of calculating the flavor changing couplings for the charged goldstone modes is
exactly the same as in Ref. [19]. As the couplings of the goldstone has to match those of the
W-bosons at tree level, so as to form its longitudinal mode, the flavor changing effects have
to be

(P G+
LR )JI = −

√
2

v
V JI

effm̄dI
(38)

(P G+
RL )JI =

√
2

v
m̄uI

V JI
eff (39)

The charged Higgs has the effective lagrangian [31]

LH+
eff =

√
2

v
ūR

[

cot βmu −
vd√
2

tan β∆Yu

]

VeffdLH+ +

√
2

v
ūLVeffD

†
L

[

tan βmd −
vu√
2

cot β∆Yd

]

DRdRH+ (40)

where

(∆Yu)
JI = yuJ

(ǫ
′J
0 δJI + ǫ

′

Y y2
bV

J3
0 V I3∗

0 ) (41)

(∆Yd)
JI = −ydJ

(ǫJ
0 δJI + ǫY y2

t V
3J∗
0 V 3I

0 ) (42)

are the generic form of corrections to the down(up) Yukawas after neglecting the Yukawas of
the first two generations. The matrices ǫ′0 and ǫ′Y are closely related to ǫ0 and ǫY and their
form is given in Appendix A.1. Hence, we find for I = 1, 2, 3

(P H+
RL )3I =

√
2

v
mt cot β V 3I

eff

(

1 − tan β
(

ǫ
′3
0

+ǫ
′

Y y2
b

[

1 + ǫ3 tan β

1 + ǫ0
3 tan β

δ3I − ǫY y2
t tanβ

1 + ǫ0
3 tan β

]))

, (43)

for J 6= 3

(P H+
RL )J3 =

√
2

v
muJ

cot β V J3
eff

(

1 − tanβ

(

ǫ
′J
0 + ǫ

′

Y y2
b

1 + ǫ∗3 tan β

1 + ǫ0∗
3 tan β

))

(44)

and finally for (J, I) = (2, 1), (1, 2), (1, 1) and (2, 2)

(P H+
RL )JI =

√
2

v
muJ

cot β V JI
eff

(

1 − tan βǫ
′J
0

)

(45)

which agrees with Ref. [19] if the phases are neglected. To find the left-right coupling we
neglect the (∆Yd) as it is suppressed by cotβ so that we have for I 6= 3

(P H+
LR )3I =

√
2

v

m̄dI
tanβ(1 + ǫ3 tan β)

(1 + ǫ3
0 tan β)(1 + ǫ∗3 tan β)

V 3I
eff

(

1 + ǫ3∗
0 tan β

1 + ǫ∗I tanβ
− ǫY y2

t tanβ

1 + ǫ3 tan β

)

, (46)
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for J 6= 3

(P H+
LR )J3 =

√
2

v

m̄b tan β

1 + ǫ3∗
0 tanβ

V J3
eff (47)

and for (J, I) = (3, 3) and J 6= 3 6= I

(P H+
LR )33 =

√
2

v

m̄b tan β

1 + ǫ∗3 tan β
V 33

eff (48)

(P H+
LR )JI =

√
2

v

m̄dI
tan β

1 + ǫ∗I tanβ
V JI

eff (49)

3 Flavor changing processes in the Kaon and Bs-Meson

systems

3.1 ∆F = 2 processes

The effective Hamiltonian that contributes to ∆F = 2 processes in the Kaon and Bs meson
systems have the generic form

H∆F=2
eff =

G2
fM

2
W

16π2

∑

i

Ci(µ)Qi(µ) (50)

where Ci(µ) are the Wilson coefficients evaluted at the scale µ. The ∆F operators for a
meson of the form (q̄JqI) are

QV LL = (q̄J
Lγµq

I
L)(q̄J

LγµqI
L)

QSLL
1 = (q̄J

RqI
L)(q̄J

RqI
L)

QSLL
2 = (q̄J

Rσµνq
I
L)(q̄J

RσµνqI
L)

QV RR = (q̄J
Rγµq

I
R)(q̄J

RγµqI
R)

QSRR
1 = (q̄J

LqI
R)(q̄J

LqI
R). (51)

QSRR
2 = (q̄J

Lσµνq
I
R)(q̄J

LσµνqI
R)

QLR
1 = (q̄J

Lγµq
I
L)(q̄J

RγµqI
R)

QLR
2 = (q̄J

RqI
L)(q̄J

LqI
R)

So for the K0 − K̄0 system the quantities of interest to us are ǫK and the eigenstate mass
difference ∆MK , which to a good approximation have the form

∆MK = 2Re(〈K̄0|H∆S=2
eff |K0〉) ǫK =

eiπ/4

√
2∆MK

Im(〈K̄0|H∆S=2
eff |K0〉). (52)
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The SUSY contribution to the matrix element for the meson M may be written down as

〈M̄ |H∆S=2
eff |M〉SUSY =

G2
fM

2
W

12π2
mMF 2

Mη2B̂M

[

P̄ V LL(CV LL(µSUSY ) + CV RR(µSUSY ))+

P̄ SLL
1 (CSLL

1 (µSUSY ) + CSRR
1 (µSUSY )) +

P̄ SLL
2 (CSLL

2 (µSUSY ) + CSRR
2 (µSUSY ))

+P̄ LR
1 CLR

1 (µSUSY ) + P̄ LR
2 CLR

2 (µSUSY )
]

. (53)

For the Kaon system mK = 0.498 GeV, FK = 0.16 GeV, the values of the NLO QCD factors
from Ref. [20] are

P̄ V LL
1 = 0.25, P̄ LR

1 = −18.6, P̄ LR
2 = 30.6, P̄ SLL

1 = −9.3, P̄ SLL
2 = −16.6 (54)

for which the values η2 = 0.57, B̂K = 0.85 have been used. The dominant contributions
as shown in Ref. [19, 20] come from the double penguin diagrams which on matching give
contributions to the Wilson coefficients

CLR
2 = − 16π2

G2
f (V

21
eff)

2M2
W

3
∑

S=1

1

M2
S

(XS
RL)21(XS

LR)21

CSLL
1 = − 8π2

G2
f (V

21
eff)

2M2
W

3
∑

S=1

1

M2
S

(XS
RL)21(XS

RL)21 (55)

CSRR
1 = − 8π2

G2
f (V

21
eff)

2M2
W

3
∑

S=1

1

M2
S

(XS
LR)21(XS

LR)21.

Additional subleading contributions at large tanβ come from the charged-Higgs boson and
chargino box-diagram contributions to ǫK , and their form are given in the Appendix A.4 of
Ref. [19].

Similarly, for the Bs eigenstate mass differences ∆Ms, using again Eq. (50) for ∆B = 2
processes, we get, approximately,

∆Ms = 2|〈B̄s|H∆B=2
eff |Bs〉| (56)

Therefore, using Eq. (53), the mass difference in the B̄s − Bs meson system can be found
using mBs

= 5.37 GeV, FBs
= 0.230 GeV and the values of NLO QCD factors from Ref. [19]

being

P̄ V LL
1 = 0.254, P̄ LR

1 = −0.71, P̄ LR
2 = 0.90, P̄ SLL

1 = −0.37, P̄ SLL
2 = −0.72 (57)

for which the values ηB = 0.55, B̂BS
= 1.3 have been used. Again, the dominant contributions

come from double-penguin diagrams which have the same form as Eq. (55) with the indices
(2, 1) → (3, 2) and there are subdominant contributions from the box diagrams with charged
Higgs bosons and stop-charginos.
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3.2 ∆F = 1 processes contributing to Bs → µ+µ−

The effective Hamiltonian that contributes to ∆F = 1 processes in the Bs meson system has
the form

H∆B=1
eff =

Gfαem√
2πs2

w

V tb
effV

ts
eff

∑

i

ci(µ)Oi(µ) (58)

where the operators O are

OA = (b̄LγµsL)(l̄γµγ5l) (59)

O′
A = (b̄RγµsR)(l̄γµγ5l)

OS = mb(b̄RsL)(l̄l)

O′
S = ms(b̄LsR)(l̄l)

OP = mb(b̄RsL)(l̄γ5l)

O′
S = ms(b̄LsR)(l̄γ5l).

The operators OA and O′
A can be dropped as cA and c′A are proportional to the muon mass

and so are small at large tan β. Also the other primed operators are suppressed with respect
to the unprimed ones due to the hierarchy of quark masses. So the dominant contributions
at large tanβ come from the penguin diagrams leading to the contributions

cS = − 4π2mµ tan β

m̄bM
2
W 27/4G3/2V ts

eff sin β

3
∑

I=1

1

M2
I

(XI
RL)32O1I

cP = i
4π2mµ tan β

m̄bM2
W 27/4G3/2V ts

eff

3
∑

I=1

1

M2
I

(XI
RL)32O3I . (60)

where OIJ is the neutral Higgs diagonalization matrix and related to xS
u and xS

d through
Eq.(117). Hence, in the large tanβ limit we find [19]

BR(Bs → µ+µ−) = 2.32 × 10−6M2
Bs

(|cS|2 + |cP |2) (61)

4 Numerical Results: Minimal Flavor Violation

In this section we will study some of the phenomenological implications of the scenarios of
minimal flavor violation. The quantities of interest in the following section are ∆MK , ǫK ,
and in particular the observables in the B sector, ∆Ms and BR(Bs → µ+µ−). The standard
model theoretical prediction of ∆Ms has errors associated with the quantities m̄t, Vts, and
FBs

√

BBs
that lead to large theoretical uncertainties [36, 37]. There is good agreement

between the central values for the SM prediction for ∆Ms obtained by the CKMfitter and
UTFit groups. Their evaluation of the uncertainties is somewhat different. The UTFit group
finds the 2σ range [38]

16.7 ps−1 ≤ (∆Ms)
SM ≤ 26.9 ps−1 (62)
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with central value 21.5 ps−1, which is consistent with the CKMfitter groups’ 2σ range [39]

14.9 ps−1 ≤ (∆Ms)
SM ≤ 31.4 ps−1 (63)

and central value 21.7 ps−1. Additionally, the D0 collaboration has reported a signal consis-
tent with values of ∆Ms in the range

21 (ps)−1 > ∆Ms > 19 ps−1 (64)

at the 90 % confidence level [40]. More recently, the CDF collaboration has made a mea-
surement of ∆Ms [41],

∆Ms = (17.33+0.42
−0.21 ± 0.07(syst))ps−1. (65)

The experimental bound [42, 43]

BR(Bs → µ+µ−) ≤ 1 × 10−7 (66)

puts strong restrictions on possible flavor violating effects induced by the double penguin
contributions in the large tanβ regime. The dominant contributions for large tanβ to ∆Ms

and BR(Bs → µ+µ−) come from the same penguin diagrams. The dominant contributions to
ǫJ
0 and ǫY come from the gluino d-squark loop and the chargino u-squark loop, respectively.

Hence, for heavy squarks, the form of these loop corrections can be written approximately
as

|ǫ3
0| ≈ 2αs

3π
|M3||µ|C0(m

2
b̃1

, m2
b̃2

, |M3|2) (67)

|ǫY | ≈ 1

16π2
|At||µ|C0(m

2
t̃1
, m2

t̃2
, |µ|2), (68)

where C0 is the standard Passarino-Veltman function.

4.1 Phenomenological constraints on Double Penguin Contribu-

tions in the MFV scenario

4.1.1 The effect of BR(Bs → µ+µ−) constraint on ∆Ms

As has been shown in Ref. [19] the chargino box diagrams can be neglected if all the squark
masses are greater than about 0.5 TeV. We are now interested in setting an upper bound on
the FCNC effects induced by the double penguin contributions. From the form of Eq. (67)
and Eq. (68) it is clear that the loop integrals are larger for smaller values of the squark
masses. The value of ǫ0 is maximized for large values of µ and for values of M3 about twice
the overall squark mass value. The value of ǫY on the other hand, is maximized for large
values of At and values of µ that are of order two times the overall squark mass value.
At the same time, large values of µ and/or At may induce the presence of color breaking
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minima [44, 45]. Hence, values of M3 ∼ 2mq̃ ∼ µ maximize ǫY , while pushing ǫ0 to large
values. For these values of the parameters, the loop corrections are given by

|(ǫ3
0)MAX | ∼ 2.7 × 10−2 (69)

|(ǫY )MAX | ∼ 1 × 10−2, (70)

where we have constrained the trilinear mass parameter At
<∼ 3mq̃, so as not to create color

breaking minima [44, 45]. Let us stress that the bounds on the parameters coming from color
breaking minima may be avoided by assuming metastability of the electroweak symmetry
breaking vacuum. However, the somewhat extreme values of the parameters given above
induce additional anomalies in the low energy spectrum. For instance, values of At

>∼ 3.2mq̃,
decrease the physical Higgs mass to values lower than the current experimental bound on
this quantity [3]–[13]. It is also important to stress that for negative values of µM3, the
coupling XJI

RL may be enhanced by taking even larger values of |µ|. Indeed, ǫY only falls off
slowly for larger |µ|, while ǫJ

0 increases linearly and therefore XJI
RL grows with increasing µ.

We shall comment on the effect of taking larger values of |µ| below.
In the region of large tan β the heavy CP-even and CP-odd masses are approximately

equal and the Higgs mixing angle α ∼ 1/ tanβ, so that the dominant contribution to
BR(Bs → µ+µ−) is given by

BR(Bs → µ+µ−) = 4.64 × 10−6M2
Bs

(

4π2mµ tan β

m̄bM2
W 27/4G3/2|V ts

eff |

)2
|(XA

RL)32|2
M4

A

. (71)

Similarly we find the dominant SUSY contribution to ∆Ms comes from the CLR
2 coef-

ficient. To understand why the CLR
2 term is dominant over the CSLL

1 we consider the case
when there is no CP violation in the neutral Higgs sector. In the basis (H0, h0, A) we have
xS

u = (sin α, cos α,−i cos β) and xS
d = (cos α,− sin α, i sin β), where α is the Higgs mixing

angle. Putting these values into Eq.(55) for the (3, 2) component, we find [19],

CLR
2 ∝ m̄bm̄s tan4 β

(

sin2(α − β)

M2
H0

+
cos2(α − β)

M2
h0

+
1

M2
A

)

(72)

CSLL
1 ∝ m̄2

b tan4 β

(

sin2(α − β)

M2
H0

+
cos2(α − β)

M2
h0

− 1

M2
A

)

. (73)

From a cursory inspection of these two equation it is not clear which term is dominant, at
large tan β, as CLR

2 is suppressed by a factor of m̄s/m̄b with respect to CSLL
1 . However, using

the constraint equations that relate Mh0, α and β at tree-level in the MSSM [11] we find

M2
h0 ≈ M2

Z(1 − 4

tan2 β
) (74)

cos2(α − β)

M2
h0

=
M2

Z − M2
h0

M2
A(M2

H0 − M2
h0)

≈ 4M2
Z

M4
A tan2 β

(75)
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Figure 2: Correlation between BR(Bs → µ+µ−) and ∆Ms. The squark masses are all
uniform and have been set to 2 TeV. The rest of the SUSY parameters have been chosen so
that |ǫ0| and |ǫY | have their maximal values. The black lines have fixed values of MA/ tanβ,
but varying gluino phase. The contours represent ∆Ms for different ranges of MA (MA ≥ 500,
1000, 2000 GeV) for gluino mass and At phases equal to π, and varying tan β values. The
red (grey) vertical line is the experimental bound on BR(Bs → µ+µ−). The horizontal black
line is the 2σ upper bound on the double penguin contributions to ∆Ms from the UTFit
group while red (grey) horizontal line is the same bound from the CKMfitter group.

where only the lowest order terms in (M2
Z/M2

A) have been kept. Using these tree-level
approximations we find that

CLR
2 ∝ m̄bm̄s tan4 β

2

M2
A

(76)

CSLL
1 ∝ m̄2

b tan2 β
4M2

Z

M4
A

. (77)

Thus at large tanβ and moderate or large MA, CLR
2 clearly dominates over CSLL

1 .2 The value
of ∆Ms, including the corrections from new physics, may be represented as (∆Ms)

SM |1+fs|,
where fs is the total SUSY contribution. Due to CLR

2 being dominant we find

fs = − 16π2P 2
LR

G2
fM

2
W S0(xt)(V

32
eff)

2

2

M2
A

(XA
RL)32(XA

LR)32. (78)

In the limit of universal squark masses, for fixed values of the supersymmetry break-
ing mass parameters, the ratio between ∆Ms and BR(Bs → µ+µ−) is proportional to

2When the loop factors and phases are included the approximation for CSLL
1

still holds up to a factor of
order 1.
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(MA/ tanβ)2. Furthermore, fs is negative [17, 18, 19]. Therefore, unless |fs| > 2, the double
penguin contributions to ∆Ms always interferes destructively with the SM contribution, at
large tan β. This result, showing the suppression of ∆Ms for enhanced BR(Bs → µ+µ−),
has been known for some time and was first shown in Ref. [17, 18, 19].

In Figs. 2 and 3 we show the correlation between ∆Ms and BR(Bs → µ+µ−) for different
squark spectra and gaugino phases. In Fig. 2 the black curves show the correlation between
the double penguin contributions to ∆Ms and BR(Bs → µ+µ−) for uniform squark masses
∼ 2 TeV. We have chosen the uniform squark masses to be ∼ 2 TeV so as to ensure that for
MA ≤ 1 TeV the effective Lagrangian in Eq.(1) and Eq.(2) remains valid. Had we chosen
squark masses of the order of 1 TeV, then the low-energy effective theory would break down
for MA close to 1 TeV, and a more detailed analysis of the ǫi’s momentum dependence would
be required for these large values of MA. Each of the black curves have different values of
MA/ tanβ. The contours represent the maximal values of |∆Ms|DP , for a given value of
BR(Bs → µ+µ−), and for a given range of values of MA. Due to the fact that for fixed MA,
the ratio of |∆Ms|DP to BR(Bs → µ+µ−) goes like 1/ tan2 β, in order to maximize |∆Ms| for
any given value of BR(Bs → µ+µ−) we need to minimize the value of tan β. Inspection of
the expressions given above shows that this may be achieved by choosing positive values of µ,
arg(M3) = arg(At) = π and maximal values of |ǫ0| and |ǫY |. In order to define the contours
we have taken the values of the loop corrections given in Eq. (70). The horizontal black and
red (grey) line corresponds to an upper bound on the largest possible contribution to ∆Ms

from new physics using the 2σ values obtained by the UTFit and CKMfitter collaborations,
Eq. (62) and Eq. (63), respectively. In order to get a precise evaluation of this bound,
a complete fit to the flavor violating processes within the MSSM should be performed,
something that is beyond the scope of this paper. However, since in this region of parameters
the only relevant new flavor violating contributions are from the double penguin diagrams,
we can make an estimate of this bound in the following way: From Eq. (62) or Eq. (63) we
have a 2-σ range that goes from values consistent with the experimentally measured value
up to values much larger than the measured values. Therefore the negative double penguin
contribution can be as large as the difference between the maximum allowed SM value and
the smallest allowed experimental value. This leads to an upper bound on the magnitude
of the double penguin contributions to ∆Ms of about ∼ 10 ps−1 for the UTFit limits in
Eq. (62) or ∼ 14.5 ps−1 for the CKMfitter limits in Eq. (63). From Fig. 2 it is clear that,
for CP-odd Higgs masses below 1 TeV, this bound does not lead to any further constraint
beyond the one already obtained by the non-observation of the branching ratio of the decay
Bs → µ+µ−.

It is possible to enhance the value of ∆Ms beyond what we have explored, by allowing
values of |µ| > 2 mq̃. If, for instance, we consider values of µ ∼> 3mq̃, for the same value of
BR(Bs → µ+µ−) we can enhance ∆Ms by a factor ∼ 1.5. This suggests that the contours in
Figs. 2 and 3 are not strict upper bounds, and can be further enhanced, almost in a linear
way, by pushing |µ|/mq̃ to larger values. However, due to the extreme values of the mass
parameters selected in defining the contours, these are indicative of the upper bound on the
the double penguin contributions to ∆Ms for a given value of BR(Bs → µ+µ−) for natural
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Figure 3: Same as Fig. 2, but for third generation soft supersymmetry breaking squark
masses equal to 0.5 TeV and first and second generation squark masses equal to 5 TeV.

values of the mass parameters.
In Fig. 3 we depart from the limit of universal squark masses, by setting the third

generation squark masses ∼ 0.5 TeV while the first two generation squark masses are 5
TeV, which leads to ǫ3

0 having its maximal value, but ǫ1
0 and ǫ2

0 being 100 times smaller.
Hence, this splitting of the squark masses spoils the linear correlation between ∆Ms and
BR(Bs → µ+µ−) due to the different parametric dependences of X32

RL and X23
RL for split

masses. In both Figs. 2 and 3 the vertical red (grey) line is the experimental bound on
BR(Bs → µ+µ−) in Eq. (66).

Figs. 2 and 3 suggest that large double penguin contributions to |∆Ms| may not be
obtained, for values of ǫJ

0 and ǫY close to their maximal values in Eqs. (69) and (70), without
violating the BR(Bs → µ+µ−) bound. Due to these bounds, for values of MA < 1 TeV, the
double penguin corrections to ∆Ms are restricted to be negative and relatively small, so that
|∆Ms|SUSY <∼ 4 × 10−12 GeV, or equivalently |∆Ms|SUSY <∼ 6 ps−1.

The BR(Bs → µ+µ−) bound also constrains contributions to ∆Md and ∆MK to values
within experimental errors. For example, in Fig. 4, the SUSY contributions to ∆MK in the
Kaon system for uniform squarks masses are below the experimental error of 6× 10−18 GeV
or 0.01 ns−1, even for large values of (MA/ tanβ)2. These results seem to be at variance
with those obtained in Ref. [20]. This is mainly due to the fact that the authors of Ref. [20]
represented results in regions of parameters where the value of BR(Bs → µ+µ−) is well above
the present limit. Observe that, to arrive at this conclusion, the new limit on BR(Bs →
µ+µ−) is essential. From Fig. 4 we can also see how the improvement in the limit on
BR(Bs → µ+µ−) forces the double penguin contributions to |∆MK | from SUSY to be small.
Finally, Fig. 5 shows similar results for ǫK . As happens in the case of ∆MK , the results for
values of MA < 1 TeV are far below the current experimental value of 2.282 × 10−3.

However, within the Minimal Flavor Violation scheme, large contributions to ∆Ms are
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Figure 4: Correlation between BR(Bs → µ+µ−) and ∆MK . The squark masses are all
uniform and have been set to 2 TeV. The rest of the SUSY parameters have been chosen so
that |ǫ0| and |ǫY | have their maximal values. The black lines have fixed values of MA/ tanβ.
The contours are the double penguin contributions to ∆MK for gluino mass and At phases
equal to π, but varying tanβ. The left red (grey) vertical line is the present experimental
bound on BR(Bs → µ+µ−) while the right blue (black) verticle line is the previous limit.
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possible for scenarios in which the stops and charginos are light, so that the chargino-stop
box diagrams become larger. Furthermore, the bound on BR(Bs → µ+µ−) can be satisfied
by going to regions of large MA or low tanβ as chargino-stop box contributions are not very
sensitive to tanβ. This scenario is similar to that discussed in Ref. [29] where low values of
tan β satisfy both the dark matter and baryogenesis constraints. In Fig. 6, we choose SUSY
parameters

MA = 200 GeV, M3 = 1000 GeV, MD3 = MSUSY = 2000 GeV,

M2
U3

= −902 GeV2, At = −1000 GeV tan β = 10,

and 100 GeV ∼< 2M1, M2, µ ∼< 500 GeV

that agree with dark matter and baryogenesis constraints and produce a value of ∆Ms that is
enhanced with respect to the SM value. For this kind of particle spectrum the double penguin
contributions to ∆Ms are small compared to that of chargino stop diagrams. Although the
enhancement of ∆Ms is small, a comparison of the SM prediction, Eq. (62) and Eq. (63),
and the experimentally measured value leads to disfavor additional positive contributions of
∆Ms, larger than about 3.5 ps−1, where we have taken into account the SM allowed range
given by the CKMfitter collaboration Eq.(63), at the 2-σ level. Even stronger constraints
would be obtained if the UTfit values in Eq.(63) for (∆Ms)

SM were used. Therefore the
smallest values of µ, smaller than 200 GeV, would be disfavored. A global fit to all flavor
dependent observables within this scenario would be necessary in order to determine the
precise lower bound on µ, something that is beyond the scope of this article. Also observe
that for larger values of tanβ there may be relevant double penguin contributions that could
cancel the positive box-diagram contributions and therefore the bound on µ could be relaxed

21



in this case.
Although this scenario leads to contributions to ∆MK that are smaller than the present

experimental errors on this quantity, as can be seen in Fig. 7, it leads to interesting corrections
to ǫK , as shown in Figure 8. The results in Fig. 8 were obtained for a value of the CKM
phase δ = π/3 (the best fit value within the SM). Experimentally we know that

|ǫK | = (2.282 ± 0.014) × 10−3. (79)

and therefore the SUSY corrections are significant. For lower values of the CKM phase, how-
ever, the SUSY contributions to |ǫK | within this scenario can be smaller. The experimental
value of ǫK is usually used to put a constraint on the ρ̄− η̄ plane3. The SM contributions to
ǫK leads to the constraint equation [46]

5.3 × 10−4 = BKA2η̄[(1 − ρ̄)A2λ4η∗
2S(x∗

t ) + η∗
3S(x∗

c , x
∗
t ) − η∗

1x
∗
c ] (80)

where BK = 0.75± 0.10, A ∼ 0.85, λ = 0.22, η∗
1 = 1.32+0.21

−0.23, η
∗
2 = 0.57+0.00

−0.01, η
∗
3 = 0.47+0.03

−0.04 and
S(xt) and S(xc, xt) are the Inami-Lim functions. Because the stops are light the dominant
contributions to ǫK come from the chargino stop diagram. Under these approximations we
find the ǫK constraint equation in ρ̄ − η̄ plane is modified to become

5.3 × 10−4 = BKA2η̄[(1 − ρ̄)(1 + ζ)A2λ4η∗
2S(x∗

t ) + η∗
3S(x∗

c , x
∗
t ) − η∗

1x
∗
c ]. (81)

where ζ hides all the SUSY dependences. The dominant contribution to ǫK from SUSY
comes from the CV LL Wilson coefficient. Thus we have approximately,

ζ ∼ P̄V LL

8G2
F M2

W S(x∗
t )

D2(m
2
t̃2
, m2

t̃2
, m2

χ2
, m2

χ2
) (82)

where mt̃2 is the lightest stop mass, mχ2 is the lightest chargino mass and D2 is the Passarino-
Veltmann function

D2(x, y, z, t) =
y2

(y − x)(y − z)(y − t)
log
(y

x

)

+
z2

(z − x)(z − y)(z − t)
log
(z

x

)

+

t2

(t − x)(t − y)(t− z)
log

(

t

x

)

. (83)

Taking the lightest stop mass to be 120 GeV and approximating the the lightest chargino
mass by |µ| we can estimate ζ ∼ 0.4 for values of µ ∼ 100 GeV. However as |M2| ≃ |µ| there
are also relevant contributions from the heavier chargino. Including these contributions, we
obtain ζ ∼ 0.55. Including this value of ζ in the theoretical prediction for ǫK will lead
to a modification of the values of ρ̄ and η̄ extracted from the fit to the flavor observables.
Although a global fit to these quantities within the light stop scenario is beyond the scope
of this article, we notice that for ζ <∼ 0.55, the new constraint equation, Eq. (81), is still
consistent with the limits coming from |Vub|/|Vcb|, sin(2β)eff and ∆Ms,d and therefore this
scenario is not ruled out by these considerations.

3ρ̄ and η̄ are the usual corrected Wolfenstein parameters of the CKM matrix
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4.1.2 The effect of BR(Bs → µ+µ−) constraint on Higgs physics at the Tevatron

and the LHC

As shown above, in the minimal flavor violating scheme, all dominant FCNC effects at large
tan β are proportional to ǫY , which is directly proportional to the product of the µ and
At, but inversely proportional to the square of the squark masses. The FCNC effects are
strongly enhanced for large values of tanβ and small values of the CP-odd Higgs mass.
The Tevatron collider is performing searches for non-standard Higgs bosons, which become
efficient for exactly the same conditions. Therefore, in minimal flavor violating models,
current bounds on the rate Bs → µ+µ− impose strong constraints on the possibility of finding
non-standard Higgs bosons at the Tevatron collider (for related studies, see Refs. [57]–[59]).
This is particularly true for large values of the At and µ parameters, for which ǫY is enhanced.

Low values of the CP-odd Higgs mass are also associated with low values of the charged
Higgs mass. These values of the charged Higgs mass induce large positive corrections to
the branching ratio BR(b → sγ). Since the measured value of BR(b → sγ) agrees well
with the SM prediction, these large charged Higgs induced corrections to the rare decay rate
needs to be cancelled by similarly large corrections induced by supersymmetric particles. In
minimal flavor violating schemes, these SUSY corrections are associated with stop-chargino
loops [14],[48]–[53]. For positive (negative) values of Atµ, the corrections to the amplitude
of the decay b → sγ have the same (opposite) sign to the ones associated with the charged
Higgs corrections, and grow linearly with tanβ. Therefore, agreement of the theoretical
predictions with the experimental values of BR(b → sγ) for small values of MA demands
negative values of Atµ.

Additional constraints come from the CP-even Higgs sector. For a given value of the
overall squark masses, the mass of the lightest CP-even Higgs boson in the large tanβ
regime depends strongly on the parameter At. In particular, this mass is maximized for a
value of Xt = At − µ/ tanβ ≃ 2.4 MSUSY (where MSUSY is equal to the average stop mass)
and minimized for values of Xt = 0 [3]. Due to the complicated dependence of the Higgs
boson properties on the supersymmetric mass parameters, searches for Higgs bosons at the
Tevatron and the LHC are usually interpreted in terms of benchmark scenarios [47]. For
instance, the scenario with Xt/MSUSY ≃ 2.4 is named the maximal mixing scenario, since
it is associated with the values of the stop mixing parameters that maximize the lightest
CP-even Higgs mass. Similarly, Xt = 0 defines the minimal mixing scenario. While for
the maximal mixing scenario the constraints coming from FCNC are particularly strong, no
constraint from Bs → µ+µ− are expected to be obtained in the minimal mixing scenario.

In Fig. 9, we display the constraints in the MA–tanβ plane that are induced by the
requirement of obtaining a good agreement with the BR(b → sγ) and the non-observation
of Bs → µ+µ− at the Tevatron collider. The results are presented for different values of Xt

and µ parameters and supersymmetry breaking squark masses equal to 1 TeV. The region
of parameter space consistent with Bs → µ+µ− for µ = −100 GeV and µ = −200 GeV is
below the dotted and dashed lines respectively. For each value of At, larger values of |µ|
imply consistency with larger values of MA and smaller values of tan β. On the other hand,
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Figure 9: The dashed(dotted) line is the BR(Bs → µ+µ−) experimental bound in the
MA − tan β plane for µ = −200(−100) GeV and the yellow (light grey) and blue (dark grey)
bands are the b → sγ allowed regions for µ = −200 GeV and −100 GeV, respectively, in the
uniform squark limit with MSUSY = 1 TeV, |M3| = 0.8 TeV, and 2M1 = M2 = 110 GeV.
The red (grey) line is the projected CDF limit on H → ττ for 1fb−1 luminosity. Larger
luminosities would probe larger MA and smaller tanβ. Also changing µ from −200 GeV to
−100 GeV does not affect the CDF limit significantly. Figures (a),(c) and (e) have different
values of Xt = At − µ/ tanβ for arg(M3) = 0 while (b), (d) and (f) have a arg(M3) = π
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the regions in the MA − tan β plane that are consistent with the observed values of

BR(b → sγ)Exp = 3.38+0.3
−0.28 × 10−4 (84)

and the estimated theoretical uncertainty [54]

|BR(b → sγ)Exp − BR(b → sγ)SM | < 1.3 × 10−4 (85)

are given by the colored bands. For larger values of |µ| the bands move to smaller values of
MA or smaller values of tan β. Actually, the approximate cancellation of the charged Higgs
and chargino stop contributions implies a correlation between 1/M2

A and Atµ tanβ. We have
also plotted the projection of the CDF limit for non-standard MSSM Higgs boson inclusive
searches in the A, H → ττ channel for a total integrated luminosity of 1 fb−1. In order to
obtain this limit we have used the approximate relation given in Ref. [55]

σ(gg, bb̄ → A) × BR(A → τ+τ−) ∼ σ(gg, bb̄ → A)SM
tan2 β

(1 + ǫ3 tanβ)2 + 9
, (86)

along with the Tevatron’s reach for scenario of maximal mixing with µ ∼ −200 GeV and a
luminosity of 1 fb−1 shown in Ref. [56].

The Tevatron collider is only sensitive to values of MA smaller than about 300 GeV
and values of tanβ larger than about 40. For maximal mixing, Fig. 9(a) shows that the
constraints coming from flavor physics are sufficiently strong so as to restrict the parameter
space consistent with the search for non-standard Higgs bosons at the Tevatron collider. On
the other hand, for values of At ≃ 1 TeV, Fig. 9(c) shows that one can obtain borderline
consistency with the constraints coming from the flavor sector, but only for the smaller values
of µ and MA ≃ 200 GeV. Finally, for values of At = 500 GeV or smaller, Fig. 9(e) shows
that the bounds coming from BR(b → sγ) are sufficiently strong as to strongly restrict the
parameter space consistent with non-standard Higgs boson searches at the Tevatron collider.

The situation is ameliorated for positive values of µM3, keeping negative values of µAt.
In Figs. 9(b),(d) and (f) we have changed the sign of the gluino mass (the same results
would be obtained by keeping the gluino mass fixed but changing the sign of µ and At).
Positive values of µM3 diminish the ǫ0 contributions and hence make the bound coming
from BR(Bs → µ+µ−) slightly less severe. The bound coming from BR(b → sγ) is also
improved, with the colored bands being slightly lower. Thus for Xt

<∼ 1 TeV the region of
MA ∼ 200 GeV, small µ and tan β ∼ 50, that is not excluded by flavor physics, will be
probed by the Tevatron Higgs searches in the near future.

Finally, we consider the minimal mixing scenario, Xt ≃ 0. In this case, the constraints
coming from the non-observation of Bs → µ+µ− become very weak, even for large values
of |µ|. As we will explain below, this opens up an interesting possibility: The dominant
charged Higgs contribution to the b → sγ amplitude at large tanβ is proportional to the
charged Higgs coupling to top and bottom quarks given in Eq. (44). Setting, for simplicity,
Ab = 0 makes the ǫ′Y ≈ 0 while

ǫ3′

0 ≈ 2αs

3π
µM3(cos2 θt̃C0(m

2
s̃L

, m2
t̃1
, M2

3 ) + sin2 θt̃C0(m
2
s̃L

, m2
t̃2
, M2

3 )). (87)
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Therefore, in this case, the charged Higgs contribution to the BR(b → sγ) becomes propor-
tional to [50, 51]

AH+ ∝
1 − 2αs

3π
µM3 tan β

(

cos2 θt̃C0(m
2
s̃L

, m2
t̃1
, M2

3 ) + sin2 θt̃C0(m
2
s̃L

, m2
t̃2
, M2

3 )
)

1 + ǫ3 tanβ
, (88)

where θt̃ is the stop mixing angle. From Eq. (88) we can clearly see that for large positive
values of M3µ and tanβ, the charged Higgs amplitude can be strongly reduced. Furthermore
when Xt ≃ 0 the chargino stop contribution to b → sγ is also small. Since, for these
parameters, the BSM contributions to the BR(b → sγ) are small, the experimental limit
in Eq. (84) puts only a weak constraint on the allowed value of MA. Moreover, as stressed
above, for this parameter region Bs → µ+µ− also provides no constraint because Xt ∼ 0
implies small values of ǫY .

Additionally, for the values of the parameters for which a cancellation of the charged Higgs
contribution to BR(b → sγ) occurs, the usual bound on tanβ that comes from requiring
that yb be perturbative up to the GUT scale may be relaxed: The bottom Yukawa has the
form

yb ≃
√

2mb tan β

v(1 + ǫ3 tanβ)
(89)

and as ǫ3 tanβ is real and positive, and of order one for the cancellation to occur, the
denominator suppresses the Yukawa for large values of tanβ. This leads to an enhancement
of the upper bound on tan β coming from perturbative consistency in the bottom quark
sector.

In Fig. 10 we illustrate such a scenario for different values of |µ|. Because both the
Bs → µ+µ− and b → sγ constraints allow essentially any value of MA ∼> 100 GeV a large
region of the MA − tan β can be probed by the heavy MSSM Higgs searches at the Tevatron.
Interestingly enough, the lightest Higgs boson mass is also close to the experimental bound
mh ≃ 115 GeV in this region of parameters, and therefore it could be at the reach of the
Tevatron collider searches.

In conclusion, for minimal flavor violating schemes, the discovery of a non-standard Higgs
signature at the Tevatron collider would point to a definite region of parameter space, with
values of Xt of order of the squark masses or smaller. Larger values are strongly restricted
by the present Tevatron, CLEO and B-factory experimental constraints. It is important
to remark that, as the luminosity of the Tevatron increases, the probability of measuring
Bs → µ+µ− increases, and so does the one of measuring a non-standard Higgs boson signal.
However, as it becomes clear from the above discussion, an improvement of the bound on
Bs → µ+µ− would put strong restrictions on the possibility of measuring a non-standard
Higgs boson signature for moderate or large values of Xt. Conversely, if a Higgs boson
signature were observed, with absence of observation of Bs → µ+µ−, it would imply either
small values of Xt, or a strong departure from minimal flavor violating scenarios.

It is interesting to analyze the constraints that the non-observation of Bs → µ+µ− at
the LHC, for a total integrated luminosity of order of 10 fb−1, would put on the MSSM
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Figure 10: (a)–(c) Corresponds to µ = 500 − −1500 GeV with the blue (dark grey) band
showing b → sγ allowed regions for these values of µ in the uniform squark mass limit with a
common value of the squark masses MSUSY = 1 TeV, M3 = 0.8 TeV, 2M1 = M2 = 110 GeV.
The red (grey) line is the projected CDF limit on H → ττ for 1fb−1 luminosity. The dashed
part of the projected Tevatron reach is an extrapolation of the curve. (d) Shows the effect
of including the squark loop correction to P H+

RL vertex, proportional to ǫ3′

0 , on b → sγ rate
for µ = 1 TeV. The dashed line corresponds to the case when corrections are not included
while the solid line corresponds to the case when they are included.

parameter space. The projected Atlas bound on BR(Bs → µ+µ−) in this case would be of
order 5.5 10−9 [60], and therefore would imply strong constraints on the MA–tanβ parameter
space (The final Tevatron bound, in case of non-observation of Bs → µ+µ−, assuming a total
integrated luminosity of order 8 fb−1, will be close to 2 10−8 [61] and therefore it will set
similarly strong bounds on the parameter space). In order to study the possible implications
for searches of non-standard Higgs bosons at the LHC, we have considered the projected
reach of the CMS searches in the inclusive pp → Φ + X, Φ → τ+τ− mode, at a luminosity
of 30 fb −1 [62].

From Fig. 11 we can see that even for the most restrictive case of maximal mixing
and negative values of µM3, the bound coming from the non-observation of Bs → µ+µ−

would be consistent with the observation of a non-standard Higgs boson for small values
of |µ| ≃ 100 GeV and somewhat large values of 350 <∼ MA

<∼ 500 GeV. These bounds are
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Figure 11: Comparison of the projected reach for non-standard Higgs bosons at the LHC
in the inclusive pp → Φ + X, Φ → τ+τ− mode (red (grey) line) with the limits that would
be obtained in case of non-observation of the decay mode Bs → µ+µ− for an integrated
luminosity of 10 fb−1 for µ = −100 GeV (dotted line) and µ = −300 GeV (dashed line). Blue
(dark grey) and yellow (light grey) areas correspond to the bounds coming from BR(b → sγ)
for µ = −100 GeV and µ = −300 GeV, respectively. The upper edge of the µ = −300 GeV
area is denoted by the dot-dashed line. We show these results for a common value of the
squark masses MSUSY = 1 TeV and (a) Xt = 2.4 TeV, (b) Xt = 1 TeV, and positive
(negative) values of µM3 (µAt), and |M3| ≃ 0.8 TeV.

strongly relaxed for smaller values of Xt. For instance, for Xt
<∼ 1 TeV, observation of non-

standard Higgs bosons would be still allowed for any value of MA, provided |µ| <∼ 300 GeV.

5 Non-minimal Flavor Violation

5.1 Gluino Contributions to ∆Ms

The results in the case of non-minimal flavor violation discussed in section 2.1.2 are quite
similar to the case of minimal flavor violation. As in the case of MFV for large tanβ, the
dominant contribution to ∆Ms comes from the DP diagrams. However, in the non-minimal
flavor violation scenario introduced here, the effects of gluino boxes can also be important
and compete with the double penguin contributions. The appearence of the gluino-box
contributions is a direct consequence of the quark-squark-gluino vertices not being diagonal
in the flavor basis. In the case of uniform squarks masses these contributions disappear due
to the CKM matrix being unitary.

The double penguin contributions to BR(Bs → µ+µ−) in the non-minimal flavor sce-
nario may be significantly larger than in the case of MVF. For instance, assuming that the
third generation left-handed and right-handed down squark masses are light implies that the

28



bL

bL

s L

s L

bL

bL

bL

bL

bL

bL

s L

s L

s L

s L s L

s L

(a) (b)

(d)(c)

Figure 12: Gluino box diagrams that make contributions to ∆Ms for the Nonminimal flavor
violation. Diagrams (b) and (d) are possible because of the gluinos are Majorana and the
lower diagrams have a relative sign difference with respect to the upper ones [63]
.

vertices in Eq. (25) are proportional to

XJI
RL ∝ V 3J∗

eff V 3I
eff

((

1 − 1

ρ2

)

ǫ3
0 + ǫY

)

(90)

where ρ = mq̃1,2/mq̃3 . Therefore when the squark mass splitting is large these vertices can
give large contributions to ∆Ms and BR(Bs → µ+µ−). However, the linear correlation
between ∆Ms and BR(Bs → µ+µ−) is not spoiled by the splitting of the squark masses as
there is no flavor dependence in the factor multiplying mdJ

V 3J∗
eff V 3I

eff in Eq.(25). Therefore
the BR(Bs → µ+µ−) bound is still a severe constraint on large double penguin contributions
to ∆Ms like in the MFV scenario.

An interesting case is one in which the gluino box diagrams dominate over the double
penguin contributions to ∆Ms for moderate values of ρ ∼ 2 or 3. Similar to the light-stop
scenario for MFV there are situations in which the gluino box diagram contributions are
sizeable and the other contributions are suppressed. The double penguin contributions are
suppressed for low values of tan β. On the other hand, large values of µ and M2 suppress
the stop-chargino box diagrams. Since the gluino box diagram effects are larger for small
values of the left-handed squark and gluino masses, we shall investigate the case in which the
third generation left-squark soft supersymmetry breaking parameters are about 100 GeV.
To avoid the Tevatron bound on sbottoms we also assume that the lightest neutralino is
within 20 GeV of the sbottom mass [64]. We can achieve this mass difference by choosing
an appropriate value of M1. For larger values of the soft SUSY breaking sbottom mass
parameter, of about ∼ 200 GeV the gluino box contribution becomes negligble.

Light left-handed squarks tend to lead to large values of the T -parameter and hence are
constrained by precision electroweak data. These large contributions to the T -parameter are
induced by the large difference between the left-handed sbottom and stop masses and are
proportional to the top quark mass. However, for some range of values of the right-handed
stop mass parameter, these large contributions may be minimized. Indeed, for large values of
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Figure 13: Variation of SUSY contributions to ∆Ms with input parameters MA = 250
GeV, MSUSY = 1000 GeV, M1 = 110 GeV M2 = 1000 GeV, µ = 1100 GeV, M(ŨL,D̃L)12

=
MŨR,D̃R

= 1000 GeV, M(ŨL,D̃L)3
= 100 GeV, At = 1110 GeV, tanβ = 10 and all relevant

SUSY phases are zero.(a) Shows the variation of ∆Ms over small values of gluino mass, while
(b) shows that in limit of large gluino mass we recover the SM value.

the right handed stop mass parameter MŨR
and Xt ≃ MŨR

, the lightest stop mass becomes
mainly left-handed and its mass is given by

m2
t̃1
≃ M2

ŨL
+ m2

t

(

1 − X2
t

M2
ŨR

)

+ Dt
L (91)

where Dt
L is the small D-term contribution to the left-handed stop mass. Observe that for

Xt ≃ MŨR
, the top-quark mass contribution is strongly suppressed and hence the contribu-

tion to the T -parameter becomes small [65]. In our analysis we have chosen the stop mass
parameters so that the relation Xt = MŨR

is fulfilled.
In Fig.13 we see that for gluino masses below 200 GeV, the gluino-sbottom box contribu-

tion yields a value of ∆Ms that is greater than the 1σ bound coming from the SM. Similarly,
in Fig. 14 we that there are large negative contributions to ǫK from the gluino box-diagrams
for M3 ∼< 200 GeV. The total value ∆Ms drops below that of the SM, for M3 ∼> 200 GeV,
because of the interference between the diagrams in Fig. 12. For the region M3 ∼< 200 GeV,
where ∆Ms is large, the contributions to ǫK are also larger but negative, which seems to
predict a total value of ǫK much smaller than the experimentally observed one. Therefore,
the gluino box contributions to ∆Ms, in this non-minimal flavor violating scenario with fla-
vor changing effects induced by the CKM matrix elements, are generally small and are at
most as large as those in the light stop scenario discussed above . In addition this scenario
is in general highly contrived as the experimental constraints from light gluino and sbottom
searches [64] can be avoided only by going to a small corner of the MSSM parameter space.
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Figure 14: Variation of the gluino contributions to ǫK with the gluino mass M3 for the same
input parameters as in Fig. 13

6 Conclusions

In this article, we have studied the constraints on the parameter space of minimal flavor
violating SUSY models coming from the latest constraints on Bs → µ+µ−, ∆Ms, ǫK and
BR(b → sγ). Firstly, we have shown that the analysis of the double penguin contributions
to observables in the Kaon sector could not be done with the available formulae in the
literature. We derived a new formula that describes well the Kaon sector contributions
and show that the present constraints on Bs → µ+µ− eliminate the possibility of inducing
relevant double penguin corrections in this sector. Alternative contributions, coming from
chargino and stop loop corrections can produce large contributions to ǫK , which, considering
the present theoretical uncertainties, are consistent with the bounds coming from other flavor
observables.

We have also verified that the double penguin contributions to ∆Ms interfere destructively
with the SM contribution and are strongly constrained by the non-observation of Bs → µ+µ−

at the Tevatron collider. Analyzing the dependence of ∆Ms on the supersymmetric loop
corrections, we obtained upper bounds on this quantity for any given value of Bs → µ+µ−,
for natural values of the supersymmetric mass parameters. We have also shown that for
MA < 1 TeV, under the current theoretical and experimental uncertainties, this bound
is stronger than the bound on the new physics contributions that is obtained from the
comparison of the SM predictions and the experimentally measured values. Finally, if the
theoretical errors on ∆Ms were reduced and the SM central value was to remain the same
then negative corrections to ∆Ms, like that of the double penguin contribution, would be
necessary. However such double penguin corrections to ∆Ms of about a few ps−1’s can be
obtained only if BR(Bs → µ+µ−) ∼> 3 × 10−8 for MA ≤ 1 TeV, which is within the future
sensitivity of the Tevatron collider.

On the other hand, relevant, positive constributions to ∆Ms may be obtained for light
stops and charginos. The contributions may be as large as 25 percent of the SM values,
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almost independently of the value of tanβ. Contrary to the double penguin contribution,
the chargino-stop contributions are positive and they are more strongly constrained than the
negative double penguin ones. Small values of the Higgsino mass, µ < 200 GeV tend to be
disfavored for mass parameters consistent with the scenario of electroweak baryogenesis. We
have also analysed a scenario in which there are flavor violating effects proportional to CKM
matrix elements in the left-handed down squark-gluino vertices at tree-level. Although the
box-diagrams may lead to significant contributions to ∆Ms for sufficiently small gluino and
down squark masses, this contributions are constrained to be small once the bounds on ǫK

are taken into account.
We have also analyzed the complementarity of these FCNC constraints with direct Teva-

tron searches for heavy MSSM Higgs bosons. We have analyzed different scenarios and
showed that BR(b → sγ) and BR(Bs → µ+µ−) puts strong constraints on the MA − tanβ
plane. This study suggests that within minimal flavor violating scenarios, the observation
of non-standard MSSM Higgs bosons at the Tevatron collider would imply either moderate
values of |Xt/MSUSY | <∼ 1 and small values of |µ|, or very small values of Xt and large values
of |µ|. Interestingly enough, for values Xt

<∼ MSUSY , the lightest CP-even Higgs boson mass
is smaller than 120 GeV and therefore possibly at the reach of Tevatron high luminosity
searches.

Finally, we have analysed the implications of non-observation of Bs → µ+µ− at the
LHC, for a total integrated luminosity of order of 10 fb−1, on searches for non-standard
MSSM Higgs bosons at this collider. Even for the most restrictive case of maximal mixing
and negative values of µM3, this situation would be consistent with the observation of a
non-standard Higgs boson for small values of |µ| ≃ 100 GeV and somewhat large values of
350 <∼ MA

<∼ 500 GeV. For Xt
<∼ 1 TeV, instead, observation would be still allowed for any

value of MA, provided |µ| <∼ 300 GeV.
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A Appendix

A.1 A corrected perturbative approach for calculating FCNC

We would like to develop a perturbative approach to calculating flavor changing vertices
which in the limit of uniform ǫ̂0 should reproduce the exact result in Eq. (27).

A.1.1 Basic setup and notation

As a starting point, we assume the form of the mass matrix

(Md)JI = mdJ

(

(1 + ǫJ tan β)δJI + ǫY y2
t tan βλJI

0

)

. (92)

As the off-diagonal elements are suppressed by CKM factors with respect to the diagonal
elements we expand in terms of the CKM factors. Therefore first order terms are proportional
to V 3J

0 for J 6= 3 and second terms are proportional to V ∗32
0 V 31

0 . Strictly speaking we should
probably expand in the Wolfenstein parameter λ and not in the CKM elements, however as
all we want is the leading behaviour, it is sufficient to expand in terms of the CKM elements.
So Md has both first and second order terms present and can be expanded to be

Md = (Md)0 + δMd + δ2Md. (93)

where δ symbolizes terms linear in V 3J
0 for J 6= 3 and δ2 symbolizes terms proportional to

V ∗3J
0 V 3I

0 for J, I 6= 3, so that

(Md)JI
0 = mdJ

(1 + ǫJ tanβ) (94)

(δMd)JI =







mdJ
ǫY y2

t tan βV 3J∗
0 J 6= 3 = I

mbǫY y2
t tan βV 3I

0 J = 3 6= I
0 otherwise

(95)

(δ2Md)JI =

{

mdJ
ǫY y2

t tanβV 3J∗
0 V 3I

0 (J, I) = (1, 2), (2, 1)
0 otherwise

. (96)

Now as we have second order terms explicitly in the mass matrix we need to expand the
diagonalization matrices to second order. Additionally they have to be unitary to second
order and the mass eigenvalues need to be real, which leads to the form

(DL)JI = (1 + δDL + δ2DL +
1

2
δDLδDL)JI (97)

(D†
L)JI = (1 − δDL − δ2DL +

1

2
δDLδDL)JI (98)

(DR)JI = (1 + δDR + δ2DR +
1

2
δDRδDR)JIeiθI (99)

(D†
R)JI = (1 − δDR − δ2DR +

1

2
δDRδDR)JIe−iθJ . (100)
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where δD†
L,R = −δDL,R and δ2D

†
L,R = −δ2DL,R. Now the requirement DL,R diagonalize

the mass matrix Md for diagonal elements gives us the condition

m̄dJ
≈ mdJ

|1 + ǫJ tan β| (101)

θJ ≈ arg(1 + ǫJ tanβ) (102)

where we have only kept the leading order behaviour (i.e. δ2 terms have been neglected).
All off-diagonal terms automatically vanish at the zeroth order and the first order con-

tributions are the same as in Ref. [19]

e−iθJ (−(δDR)(Md)0 + δMd + (Md)0(δDL))JI = 0. (103)

Which give us the results

(δDL)JI = −(M†
d

JJ
)0(δMd)JI + (δM†

d)JI(Md
II)0

|(Md
JJ)0|2 − |(Md

II)0|2
(104)

(δDR)JI = −(Md
JJ)0(δM

†
d)JI + (δMd)JI(M†

d

II
)0

|(Md
JJ)0|2 − |(Md

II)0|2
. (105)

As δMd = 0 for (J, I) = (1, 2), (2, 1) these first order corrections are zero for these ele-
ments. To find the leading order contributions to DL,R for these components we need to
go to quadratic order in the expansion parameter. Therefore the condition on the leading
contributions to DL,R for (J, I) = (1, 2), (2, 1) are

e−iθJ (−(δ2DR)(Md)0 + Λ + (Md)0(δ
2DL))JI = 0 (106)

where

ΛJI = (δDR)J3
(

(δMd)3I + (δDL)3I(Md)33
0

)

− 1

2
(δDR)J3(δDR)3I −

(δ2Md)JI − (δMd)J3(δDL)3I − 1

2
(δDL)J3(δDL)3I(Md)33

0 (107)

=
1

2
(δDR)J3(δDR)3I − (δ2Md)JI − (δMd)J3(δDL)3I

−1

2
(δDL)J3(δDL)3I(Md)33

0 . (108)

To arrive at Eq.(108) we used Eq.(103) and neglected terms of order O(mdI
/mb). Us-

ing Eq.(106) leads to a relation similar to the one in Eq.(104) and Eq.(105), except that
δMd → Λ

(δ2DL)JI = −(M†
d

JJ
)0(Λ)JI + (Λ†)JI(Md

II)0

|(Md
JJ)0|2 − |(Md

II)0|2
(109)

(δ2DR)JI = −(Md
JJ)0(Λ

†)JI + ΛJI(M†
d

II
)0

|(Md
JJ)0|2 − |(Md

II)0|2
. (110)
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Substituting these equations into Eq. (104) and Eq.(105) and neglecting all terms suppressed
by the mass hierarchy we find

(δDL)JI =











− ǫY y2
t tan β

1+ǫJ tan β
V 3I

0 J = 3 6= I
ǫ∗Y y2

t tan β

1+ǫ∗
I

tan β
V 3J∗

0 J 6= 3 = I

0 otherwise

(111)

and

(δDR)JI =















− m̄dI

m̄b

(

ǫY y2
t tan β

1+ǫ3 tan β
+

ǫ∗
Y

y2
t tan β

1+ǫ∗
I

tan β

)

ei(θ3−θI)V 3I
0 J = 3 6= I

m̄dJ

m̄b

(

ǫY y2
t tan β

1+ǫJ tan β
+

ǫ∗Y y2
t tan β

1+ǫ∗3 tan β

)

ei(θJ−θ3)V 3J∗
0 J 6= 3 = I

0 otherwise

. (112)

Now to calculate the leading order corrections to the (J, I) = (2, 1), (1, 2) elements we sub-
stitute the independent and linear order terms into Eq.(109) and Eq.(110) to find

(δ2DL)21 = V 32∗
0 V 31

0

(

− ǫY y2
t tan β

1 + ǫ2 tanβ
+

ǫ2
Y y4

t tan2 β

(1 + ǫ2 tan β)(1 + ǫ3 tanβ)
+

|ǫY |2y4
t tan2 β

2|1 + ǫ3 tanβ|2
)

(113)

(δ2DR)21 = V 32∗
0 V 31

0

m̄d

m̄s
ei(θ2−θ1)

[

−
(

ǫY y2
t tan β

1 + ǫ2 tanβ
+

ǫ∗Y y2
t tanβ

1 + ǫ∗1 tan β

)

+

|ǫY |2y4
t tan2 β

|1 + ǫ3 tan β|2 +
(ǫ∗Y )2y4

t tan2 β

(1 + ǫ∗1 tanβ)(1 + ǫ∗3 tan β)
+

ǫ2
Y y4

t tan2 β

(1 + ǫ2 tan β)(1 + ǫ3 tanβ)

]

. (114)

Using Eq.(111), Eq.(112), Eq.(113) and Eq.(114), we find the same corrections to the effective
CKM matrix to leading order as in Refs. [19, 17, 15, 16]

V JI
0 =











V 3I
eff

1+ǫ3 tan β
1+ǫ30 tan β

J = 3 6= I

V J3
eff

1+ǫ∗3 tan β

1+ǫ3∗0 tan β
J 6= 3 = I

V JI
eff otherwise

(115)

A.1.2 Flavor changing effective couplings of the Neutral Higgs Bosons

Using the relations derived in the previous section, it is relatively straightforward to calculate
the coupling of the neutral Higgs bosons to the quarks. The effective lagrangian in the initial
basis has the form

Leff = −(d̄0
J)RFdS

L (d0
I)LS0 − (d̄0

J)LF
dS
R (d0

I)RS0 (116)
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where S0 can be any of the three neutral scalars which has mixing matrix elements xS
d for the

Φ0∗
d Higgs and xS

u for the Φ0∗
u Higgs. So if OIJ diagonalizes the neutral Higgs mass matrix,

we have

xS
d = O1S + i sin βO3S

xS
u = O2S − i cos βO3S (117)

Now if we rotate quarks into the physical basis the Lagrangian has the form

Leff = −(d̄J)R

(

D
†
RFdS

L DL

)

(dI)LS0 − (d̄J)L

(

D
†
LF

dS
L DR

)

(d0
I)RS0 (118)

Therefore, assuming a mass matrix of the form given in Eq. (92), we obtain,

(Fds
L )JI =

mdJ

vd

(

(xS
d + ǫJxS

u)δJI + ǫY y2
t x

s
uλ

JI
0

)

. (119)

which has a dependence up to second order on the CKM elements. Therefore, we obtain the
following expansion in terms of CKM elements

Fd
LS = (FdS

L )0 + δFdS
L + δ2FdS

L (120)

where

(FdS
L )JI

0 =
m̄dJ

eiθJ

vd(1 + ǫJ tanβ)
(xS

d + ǫJxS
u)δJI (121)

(δFdS
L )JI =











m̄dJ
eiθJ ǫY y2

t xS
u

vd(1+ǫJ tan β)
V 3J∗

0 J 6= 3 = I
m̄d3

eiθ3ǫY y2
t xS

u

vd(1+ǫ3 tan β)
V 3I

0 J = 3 6= I

0 otherwise

(122)

(δ2FdS
L )JI =

{

m̄dJ
eiθJ ǫY y2

t xS
u

vd(1+ǫJ tan β)
V 3J∗

0 V 3I∗
0 (J, I) = (1, 2), (2, 1)

0 otherwise
. (123)

Therefore the leading order contribution to the diagonal terms of ddS0 coupling is just
Eq. (121). Again the zeroth term makes no contribution to the off diagonal elements of the
ddS couplings. Hence, at linear order we have for J 6= I

δ
(

D
†
RFdS

L DL

)JI

= e−iθJ
(

−(δDR)JI(FdS
L )II0 + (δFdS

L )JI+

(FdS
L )JJ

0 (δDL)JI
)

(124)

which also disappears for (J, I) = (1, 2), (2, 1). So the only contributions that are none zero
at this order are when either J = 3 or I = 3. Using Eq. (111), Eq. (112), Eq. (115) and
Eq. (122) and neglecting terms suppressed by the mass hierarchy we find that

(XS
RL)JI = δ

(

D
†
RFdS

L DL

)JI

=










m̄bǫY y2
t

vd(1+ǫ3 tan β)(1+ǫ30 tan β)
V 3I

eff(x
S
u − xS

d tanβ) J = 3 6= I
m̄dJ

y2
t ΓJ3

vd(1+ǫ3 tan β)(1+ǫJ tan β)
V 3J∗

eff (xS
u − xS

d tanβ) J 6= 3 = I

0 otherwise

(125)

36



where

ΓJ3 =
ǫY (1 + ǫ∗3 tanβ) − ǫ∗Y (ǫ3 − ǫJ) tanβ

1 + ǫ3∗
0 tanβ

(126)

Finally to find the leading corrections to qqH coupling for (J, I) = (2, 1), (1, 2) we need
to go to quadratic order in which case we have

(XS
RL)21 = δ2

(

D
†
RFdS

L DL

)21

,

=
m̄sy

2
t Γ

21(xS
u − xS

d tan β)

vd(1 + ǫ2 tan β)(1 + ǫ3 tanβ)
V 32∗

eff V 31
eff (127)

(XS
RL)12 = δ2

(

D
†
RFdS

L DL

)12

=
m̄dy

2
t Γ

12(xS
u − xS

d tan β)

vd(1 + ǫ1 tan β)(1 + ǫ3 tanβ)
V 31∗

eff V 32
eff , (128)

where

Γ21 =
ǫY

(1 + ǫ2 tan β)|1 + ǫ3
0 tan β|2

[

(1 + ǫ3
0 tanβ)|1 + ǫ3 tanβ|2−

ǫY y2
t tan β(1 + ǫ∗3 tan β)(1 + ǫ2 tanβ)−

ǫ∗Y y2
t tan β(1 + ǫ2 tan β)2

]

, (129)

Γ12 =
ǫY

(1 + ǫ2 tan β)|1 + ǫ3
0 tan β|2

{

(1 + ǫ3
0 tan β)|1 + ǫ3 tan β|2−

ǫY y2
t tan β(1 + ǫ∗3 tan β)(1 + ǫ2 tanβ) − ǫ∗Y y2

t tanβ(1 + ǫ2 tan β)

(1 + ǫ1 tan β) +
ǫ1 − ǫ2

ǫY

[

ǫ∗Y tan β

1 + ǫ∗2 tan β

− (ǫ∗Y )2 tan2 βy2
t

(1 + ǫ∗2 tan β)(1 + ǫ∗3 tanβ)
− |ǫY |2 tan2 βy2

t

|1 + ǫ3 tanβ|2−
]}

. (130)

In the limit that ǫJ
0 ’s are uniform then of leading order contributions will collapse to Eq. (27)

as each of ΓIJ elements go to ǫY . As the effective lagrangian is real, the LR couplings are
related to RL, so that

XS
LR = (XS

RL)†. (131)

A.2 Calculation of Loop factors

The assumption that the squark mass matrices are block diagonal in the tree level CKM
basis gives us

M2
D =

(

(M2
Q)JδJI 1√

2
ydJ

µ̂∗
Jvuδ

JI

1√
2
ydJ

µ̂Jvuδ
JI (M2

D)JδJI

)

(132)

M2
U =

(

(M2
Q)JδJI + m2

t δ
J3δI3 − 1√

2
yuJ

µ̃∗
Jvuδ

JI

− 1√
2
yuJ

µ̃Jvuδ
JI (M2

U)JδJI + m2
t δ

J3δI3

)

(133)
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where µ̃J = µ
tan β

− AuJ
and µ̂J = µ − AdJ

tan β
. Therefore the diagonalization matrices have the

simple form

Z(U,D) =

(

δIJ cos α
(U,D)
I δIJe−iφ

(U,D)
I sin α

(U,D)
I

−δIJeiφ
(U,D)
I sin α

(U,D)
I δIJ cos α

(U,D)
I

)

(134)

where φD
I (φU

I ) is the phase of µ̂ (µ̃) and

cot 2αD
J = −

(m2
Q)J − (m2

D)J√
2ydJ

|µ̂J |vu

(135)

cot 2αU
J =

(m2
Q)J − (m2

U )J√
2yuJ

|µ̃J |vu

(136)

Following the notation of Ref. [35] Z+ and Z− diagonalize the chargino mass matrix and
ZN and ZT

N diagonalize the neutralino mass matrix. Additionally, if there is a splitting in
the mass spectrum so that the squarks of the first two generation have uniform masses (i.e.
mD1 = mD2 = mD4 = mD5 = mU1 = mU2 = mU4 = mU5 = MSUSY ) we find

ǫJ
0 =

1

16π2vu

(

32παs

3
M3µ

∗vuC0(|M3|2, m2
DJ

, m2
DJ+3
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4
∑
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P lJ
D C2(m

2
Nl

, m2
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, m2
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) + QlJ
DC0(m

2
Nl

, m2
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, m2
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)
)

− (137)
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2
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)

)

ǫY =
1

16π2vu

2
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mCl

[

−
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2
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, m2
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t )C0(m

2
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) − C2(m
2
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SUSY ) − (138)

M2
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, M2
SUSY , M2
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)

− Z2l
−Z2l

+ µ̃3vuC0(m
2
Cl

, m2
U3

, m2
U6

)
]

where Ci are the Passarino-Veltman functions, mi are the physical squark masses, Mi are
the squark soft mass parameters and

P lJ
D = Z3l

N

(

g1Z
1l
N − g2Z

2l
N

)

(139)

QlJ
D = −g1Z
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N )2µ̂Jvu. (140)

Similarly for the antiholomorphic corrections to the up Yukawas have the form

ǫ
′J
0 =

1

16π2vu
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where

P lJ
U = −Z4l

N

(

g1Z
1l
N − g2Z

2l
N

)

(143)

QlJ
U = −2g1Z
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N

3
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Jvu

(

g1Z
1l
N

3
+ g2Z
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)

− 4g1Z
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The infinities present in C2 in ǫY ’s clearly cancel, however the infinities in ǫ0’s need to be
absorbed by counter terms in the effective lagrangian. So that the C2 contributions to the
ǫ)’s in the above formulae are purely the finite pieces.
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